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Abstract 

 
The inference of functional networks of genes relies 

on the integration of multiple data sources and 
knowledge bases. More generally, there is a need to 
develop methods to automatically incorporate prior 
knowledge to support the prediction and validation of 
novel functional associations. One such important 
knowledge source is represented by the Gene Ontology 
(GO)™  and the many model organism databases of 
gene products annotated to the GO.  We investigated 
quantitative relationships between the GO-driven 
similarity of genes and their functional interactions by 
analyzing different types of associations in 
Saccharomyces cerevisiae and Caenorhabditis 
elegans. This study demonstrates that interacting 
genes (including regulatory and protein-protein 
interactions) exhibit significantly higher levels of GO-
driven similarity (GOS) in comparison to random 
pairs of genes used as a surrogate for negative 
interactions. Significant associations were identified 
using annotations from the three GO hierarchies and 
different GOS techniques. Our study indicates that, the 
Biological Process hierarchy provides more reliable 
results for co-regulatory and protein-protein 
interactions. Statistical analyses suggest that GOS 
represent a relevant resource to support prediction of 
functional networks in combination with other 
resources. 
 
1. Introduction 
 

The reliable prediction of functional networks of 
genes may be achieved by integrating multiple data 
sources, such as gene expression, phylogenetic profiles 
and high-throughput protein-protein interaction 

experiments. This is necessary because such individual 
sources may be considered as weak prediction models 
due to their limitations in terms of predictive accuracy 
and coverage. Several studies have reported significant 
links between different types of genomic data sets, as 
well as techniques (e.g. machine learning) to combine 
them and improve prediction quality for relatively 
simple model organisms, such as yeast [1], [2].  
Furthermore, it is crucial to integrate prior knowledge 
resources, such as annotation databases and the 
literature, not only for building advanced functional 
classifiers, but also to assist in the validation of 
technique-independent predictions (e.g., to detect 
potential spurious associations). 

The Gene Ontology ™  (GO) is one such source of 
prior knowledge, which has become the de facto 
standard for annotating gene products [3]. It has been 
proposed as a gold standard to assess the quality of 
several classification systems using, for example, 
expression data. A comprehensive review of some of 
such applications has been provided by Khatri and 
Drăghici [4]. Moreover, information extracted from 
model organism databases annotated to the GO has 
been applied for making de novo predictions of gene 
function in relatively simple organisms [5].   

Methods based on the GO have been proposed for 
measuring similarity between genes. Previous research 
showed significant relationships between GO-driven 
similarity of pairs of genes and their sequence-based 
similarity [6]. We have also evaluated relevant 
quantitative relationships between GO-driven 
similarity and gene expression correlation [7].  GO-
driven clustering algorithms based on such approaches 
have been recently reported [8].  Moreover, GO-driven 
similarity provides the basis for developing tools that 
may facilitate the identification of relevant partitions 
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from clustering, using, for example, GO-driven cluster 
validity indices [9]. 

Prior to integrating a predictive resource, Res, it is 
first necessary to assess its predictive relevance and 
reliability in relation to data sets of known positive and 
negative interactions [10].  In this case the hypothesis 
to prove is: Can information extracted from Res be in 
principle applied to distinguish pairs of interacting 
genes (positives) from those that have not shown 
evidence to be interacting (negatives)?  Are there 
significant quantitative relationships to indicate that 
Res may be used as an input to different prediction 
models? 

The application of information from model 
organism databases annotated to the GO to support the 
prediction of functional networks of genes has not 
been rigorously investigated.  Jansen et al. [1] 
integrated different genomic data sets including 
annotations derived only from the GO Biological 
Process hierarchy to predict protein-protein (PP) 
interactions.  The GO-driven similarity of a pair of 
genes was used as an indicator of PP interactions in 
yeast.  Between-gene similarity was calculated by 
identifying the set of GO terms shared by the two sets 
of annotations.  For a given database of protein pairs, 
the total number of protein pairs sharing the same set 
of annotations was used as an estimator of similarity.  
Thus, the lower this frequency, the more similar the 
gene pair under consideration.  These authors found 
that lower term frequencies were correlated with a 
higher likelihood of finding two proteins in the same 
complex. Nevertheless, such a similarity assessment 
approach does not fully exploit relevant topological 
and information content features that may be useful for 
meaningfully estimating between-gene similarity. In 
some cases genes annotated to closely related but 
distinct GO terms may actually exhibit no similarity 
according to this method. 

Using annotations from the three GO hierarchies: 
Molecular Function (MF), Biological Process (BP) 
and Cellular Component (CC), we sought to assess 
relationships between the GO-driven similarity of a 
pair of genes and their functional interactions.  This 
study aimed to investigate the feasibility of applying 
GO-driven similarity to support the prediction of 
functional interactions of genes, including physical and 
regulatory interactions, in Saccharomyces cerevisiae 
and Caenorhabditis elegans.  Two key questions 
addressed were: a) Can GO-driven similarity be 
applied to estimate the functional coupling of genes, 
such as gene expression co-regulations and other 
physical and non-physical interactions and b) Can such 
a knowledge be used in combination with other 
resources to improve the prediction process?  Our 

hypothesis is that the GO-driven similarity among 
genes is a relevant indicator of functional interaction. 

The following section describes the data sets 
analyzed: 1) A data set of annotated co-regulatory 
interactions from yeast, 2) an extensive, high-quality 
functional gene network for yeast, and a 3) high-
quality PP interaction data set from C. elegans.  This is 
followed by a description of the methods applied to 
measure similarity using GO annotations, its links to 
the identification of interacting pairs of genes and a 
statistical assessment of the predictions. Results for the 
three data sets are presented next. The final section 
discusses the main contributions of this study, potential 
applications and future research. 
 
2. Materials 
 
2.1. Data sets 
 
 Gene co-regulation in S. cerevisiae (CoReg) 

This data set originated from a comprehensive 
collection of annotated regulons compiled by Simonis 
et al. [11]. Their data set comprised more than 1400 
pairs of gene-factor associations retrieved from the 
TRANSFAC [12] and aMAZE [13] databases and 
literature searches.  More than 13000 pairs of co-
regulated genes were then extracted from these data.  
These pairs comprised the CoReg reference data set 
analyzed in this investigation. 

 
Functional network of yeast genes (FunNet)   

This data set was obtained from an extensive, high-
quality functional gene network investigated by Lee et 
al. [2].  Unlike the CoReg data set, FunNet comprises 
different types of functional associations, mediated or 
not by physical interaction (i.e. protein-protein, 
regulatory, etc). This network was inferred by 
integrating diverse, high-quality functional data sets: 
mRNA coexpression, gene-fusions, phylogenetic 
profiles, literature co-citation and protein interaction 
experiments, with the Kyoto Encyclopedia of Genes 
and Genomes (KEGG) database used as the gold 
standard. A sub-sample of 19,216 pairs of genes 
representing the most reliable interaction predictions 
were analyzed in this study (additional information 
about FunNet is available in a Supplementary Section 
that can be obtained on request from the authors). 

 
PP interactions in C. elegans (PPInt) 

This data set represents another level of complexity, 
in which 860 protein-protein (PP) interactions, 
including a few self-interactions, were obtained from 
the Worm Interactome (WI5) map. The selected data 



draft
set, from now on referred to as PPInt, contains the 
highest-confidence, published interactions from WI5 
[14]. 

 
2.2. The GO 
 

The GO hierarchies – Molecular Function (MF), 
Biological Process (BP) and Cellular Component (CC) 
– provide controlled terms for describing the role 
played by a gene product, the biological goals to which 
a gene product contributes and the cellular localization 
of the gene product respectively. Within each 
hierarchy, GO terms are organized in a directed acyclic 
graph, whose nodes are the terms. There are two types 
of relationships among GO terms: “is a” and “part of”. 
The first type is used when a child term is more 
specific than its parent term. The second type is used 
when a parent has the child as its part. This study takes 
advantage of both types of links for computing 
similarity between terms as justified elsewhere [6]. 

The annotations recorded in the model organism 
databases consist of associations between gene 
products and GO terms. The evidence supporting such 
annotations is captured by evidence codes, including 
TAS (Traceable Author Statement), ISS (Inferred from 
Sequence or structural Similarity) and IEA (Inferred 
from Electronic Annotation). While TAS refers to peer-
reviewed papers and indicates strong evidence, IEA 
and ISS denote automated predictions, i.e., generally 
less reliable annotations. Further information about 
databases annotated to the GO and evidence codes for 
the annotations is available at www.geneontology.org. 
The reader is also referred to [7] and [15] for an 
introduction to some of the predictive data analysis 
applications of the GO. 

 
2.3. GO annotation databases 
 

The pairs of interacting genes in the three data sets 
presented earlier are annotated to the GO.  We 
performed experiments on data excluding the less 
reliable annotations (i.e., ignoring annotations whose 
evidence code is either ISS or IEA). Moreover, we 
compared these results against those obtained from 
excluding only IEA annotations. The August 2005 
database releases of the Saccharomyces Genome 
Database (SGD) and WormBase (WB), all available at 
www.godatabase.org, provided the GO annotations for 
these data sets. 

CoReg has 8,839, 10,874, and 11,309 interacting 
pairs with both genes linked to at least one GO term 
under the MF, BP and CC hierarchies respectively. 
FunNet had 11,767, 15,520 and 16,865 pairs of 

interacting genes with both genes associated with at 
least one GO term under the MF, BP and CC 
hierarchies respectively.  In PPInt the numbers of 
interacting pairs of genes in which both genes were 
described by at least one GO term were 152 under the 
BP hierarchy and 5 under the CC hierarchy. This data 
set did not contain any valid annotations under MF. 
The number of annotations reported above refers to 
non-ISS/non-IEA annotations. Information about non-
IEA annotations and a more detailed description of the 
data sets analyzed is available in a Supplementary 
Section that can be obtained on request from the 
authors. 

 
3. Methods 
 
3.1. GO-driven similarity 
 

To estimate the similarity between two genes gk 
and gp, annotated with sets of GO terms Ak and Ap 
respectively, one must first understand how to 
calculate the similarity between two GO terms. Several 
information-theoretic approaches to measuring 
ontology-driven similarity have been studied 
previously [6], [15]. Unlike traditional edge-counting 
techniques, these methods are based on the assumption 
that the more information two terms share in common, 
the more similar they are. Lin’s similarity model, for 
example, has shown to produce both biologically 
meaningful and consistent similarity predictions [6], 
[7] in comparison to related approaches. Given terms ci 
∈ Ak and cj ∈ Ap, the between-term Lin’s similarity is 
defined as: 
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where S(ci,cj) represents the set of ancestor terms 
shared by both ci and cj, ‘max’ represents the 
maximum operator, and p(c) is the probability of 
finding c or any of its descendants in the database 
analyzed. It generates normalized values between 0 
and 1. 

Between-gene similarity results from the 
aggregation of similarity values between the 
annotation terms of these genes. In practice, given a 
pair of gene products, gk and gp, with sets of 
annotations Ak and Ap comprising m and n terms 
respectively, the between-gene similarity, SIM(gk , gp), 
is defined as the simple average (inter-set) similarity 
between terms from Ai and Aj:  
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where sim(ci,cj) may be calculated using (1). 
Nevertheless, this method might not always produce 
consistent results.  For example, intuitively, the 
similarity between two genes having the same sets of 
annotation terms is expected to be equal to 1.  
However, this is not true when several annotations 
within a hierarchy are assigned to the genes. It will 
estimate, for instance, SIM(gi, gj) = 0.5, for gi = gj 
when Ai and Aj are described by the same set of 
annotations with more than one GO term within a 
hierarchy. In order to address this limitation, we have 
introduced an alternative approach that selectively 
aggregates highest average (inter-set) similarity values 
[15] as follows: 
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These approaches and their relationships to 
sequence-based similarity and co-expression have been 
investigated in [6] and [7]. From now on we will refer 
to (2) and (3) as the simple and highest average 
similarity methods respectively. 

 
3.2. Linking GO-driven similarity and 
functional interactions 
 

Comparing GO-driven similarity to other 
indicators of functional relations. GO-driven 
similarity values were calculated for all the annotated 
pairs of genes in the data sets described in Section 2. 
These data represented our sets of true positive 
interactions, which were statistically analyzed to show 
significant relationships with GO-driven similarity.  In 
order to illustrate such links, similarity values from 
these sets of true positive interactions were compared 
to similarity values measured in a set of randomly 
associated genes, used as a surrogate for negative 
interactions, i.e. pairs of genes not showing evidence 
of interaction. In practice, a set of “non-interacting 
genes” was produced as follows. For a given data set, 
P, comprising M true positive interactions, a set N, 
with M negative interactions was built by randomly 
pairing genes from P. Moreover, the resulting sets 
were verified to ensure that newly formed pairs were 
not included in P. One has to take into account that 
some of the pairs included in N may actually be false 
negatives (i.e., interacting genes whose interaction has 
not been not recorded in P) and this might influence 
the comparisons performed. However, at least with 

regard to the data sets analyzed (evidence available) 
this could not be demonstrated.  The resulting data sets 
N represent a valid approximation of counter-
examples, which are essential to explore potential 
associations between functional interactions and GO-
driven similarity.  Furthermore, the random effects and 
variability linked to this data sampling procedure is 
reduced by generating K independent N sets.  These K 
sets are then analyzed as an aggregated set, N’, 
consisting of K x M pairs of (non-interacting) genes. 
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Fundamental relationships between GO-driven 
similarity and the existence/absence of interactions 
were estimated by comparing similarity values 
exhibited in P versus values observed in N’.  This was 
done for each of the three problems described in 
Section 2 and for the three GO hierarchies 
independently.  Differences between P and N’ were 
summarized by estimating their respective mean 
similarity values. The significance of their differences 
was tested by applying the Student’s t-Test.  The 
relevant null hypothesis tested was that these mean 
similarity values originated from the same sample, i.e. 
there are no significant differences between mean 
values in P and N’.  This relatively simple comparison 
provided key insights into relationships between the 
degree of similarity of pairs of genes and the 
likelihood that these genes are functionally interacting.  

Using GO-driven similarity to predict 
interactions. After identifying significant differences, 
the capacity of GO-driven similarity to predict 
functional interactions (as a single predictive source) 
was analyzed. Given a similarity value, SIM(gk, gp), 
and a pre-defined predictive similarity threshold value, 
GOS-Th, genes gk  and gp are predicted to be an 
interacting pair (positive interaction) if SIM(gk,gp) ≥ 
GOS-Th.  Some of these predictions will obviously be 
false.  Therefore, the next task was to estimate the rate 
of falsely predicted interactions.  More generally, this 
is related to the problem of estimating the decisive 
false discovery rate, which has shown to be a robust 
and conservative estimator of the probability, P, of 
detecting spurious associations [16]. To estimate P, 
AbN’ and AbP are calculated. AbN’ represents the 
number of interactions that would occur by chance and 
AbP the number of pairs correctly predicted as positive 
interacting pairs. The ratio AbN’/AbP represents the 
rate of falsely predicted interactions. AbN’ was 
estimated using the mean number of interacting pairs 
obtained from the K data sets, N, i.e. the total number 
of interactions observed in N’, divided by K.  A rate of 
falsely predicted interactions, P, close to 1 corresponds 
to random prediction. In contrast, low P values 
indicate strong evidence to support the validity of the 
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positive interactions detected by the GO-driven 
similarity method. P values were calculated for the 
data sets described above using different GOS-Th 
values. This analysis allows one to have a better idea 
about how many false positive predictions may 
potentially be made when applying the GO-driven 
similarity method as a single prediction model. The 
analysis tasks described above were carried out with K 
= 10.  Limited computing power was the reason for not 
generating larger numbers of sets N. However, the 
relatively large number of gene pairs included at least 
in the first two data sets should contribute to the 
reduction of the bias and variability of the estimations 

 
4. Results 
 
4.1. Results from CoReg 
 

Table 1 summarizes the differences between the 
sets P (positives) and N’ (negatives) with regard to 
their mean similarity values from the simple and 
highest average methods respectively. Unknown, IEA 
and ISS annotations were excluded. Interacting pairs of 
genes generally exhibit higher similarity values than 
non-interacting pairs using both methods. The high t 
values obtained suggest significant differences (p < 
0.001) for all GO hierarchies. This suggests the 
feasibility of applying GO-driven similarity to support 
the distinction of co-regulated from non-co-regulated 
pairs of genes.  Figure 1 shows the estimated 
probabilities, P, that such predictions are false as a 
function of the predictive threshold, GOS-Th. 

Table 1 CoReg: Differences between interacting 
and random, non-interacting pairs of genes in 
terms of their GO-driven similarity. SE: standard 
error of the estimated mean. 

Simple average similarity method 

GO  
Hierarchy 

True Positives 
(Mean ± SE) 

Random 
Pairs  (Mean 

± SE) 
Significance 

MF 0.16 ± 0.002 0.10 ± 0.0005 p < 0.001 

BP 0.27 ± 0.003 0.10 ± 0.0005 p < 0.001 

CC 0.34 ± 0.003 0.20 ± 0.0006 p < 0.001 

 
Highest average similarity method 

GO  
Hierarchy 

True Positives 
(Mean ± SE) 

Random Pairs  
(Mean ± SE) Significance 

MF 0.16 ± 0.002 0.10 ± 0.0005 p < 0.001 

BP 0.27 ± 0.003 0.13 ± 0.0005  p < 0.001 

CC 0.34 ± 0.003 0.25 ± 0.0008 p < 0.001 

Figure 1 CoReg: Rate of false positive predictions, 
P, as a function of the GOS-Th for all GO 
hierarchies. P estimates the probability of 
predicting spurious associations. 

 
4.2. Results from FunNet 
 

Tables 2 summarizes the differences between the 
sets P and N’ in terms of their mean similarity values 
using the simple and highest average methods 
respectively.  The high t values obtained suggest 
significant differences (p < 0.001) for all GO 
hierarchies. Unknown, IEA and ISS annotations were 
excluded. With both methods, pairs of interacting 
genes tend to exhibit higher similarity values than pairs 
of non-interacting genes. This suggests the feasibility 
of using GO-driven similarity to help to distinguish 
interacting from non-interacting genes (including 
physical and non-physical interactions). Figure 2 
shows the estimated probabilities, P, that such 
predictions are false as a function of GOS-Th. 
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Table 2 FunNet: Differences between interacting 
and random, non-interacting pairs of genes in 
terms of their GO-driven similarity. SE: standard 
error of the estimated mean. 

Simple average similarity method 

GO  
Hierarchy 

True Positives 
(Mean ± SE) 

Random Pairs  
(Mean ± SE) Significance 

MF 0.62 ± 0.004 0.26 ± 0.0010 p < 0.001 

BP 0.58 ± 0.003 0.28 ± 0.0008 p < 0.001 

CC 0.58 ± 0.002 0.34 ± 0.0007  p < 0.001 

 
Highest average similarity method 

GO  
Hierarchy 

True Positives 
(Mean ± SE) 

Random Pairs  
(Mean ± SE) Significance 

MF 0.66 ± 0.004 0.27 ± 0.0010 p < 0.001 

BP 0.65 ± 0.003 0.31 ± 0.0008 p < 0.001 

CC 0.64 ± 0.002 0.37 ± 0.0007 p < 0.001 

 

 
Figure 2 FunNet: Rate of false positive predictions, 
P, as a function of the GOS-Th for all GO 
hierarchies. P estimates the probability of 
predicting spurious associations. 

4.3.Results from PPInt 
Tables 3 summarizes the differences between the 

sets P and N’ with regard to their mean similarity 
values using the simple and highest average similarity 
method.  Unknown, ISS and IEA annotations were 
excluded from this analysis.  Significant differences (p 
< 0.05) were observed only in connection to the BP 
hierarchy. Figure 3 presents the estimated 
probabilities, P, that such predictions are false as a 
function of GOS-Th.  The interpretation of these 
figures should also take into account the very low 
number of gene pairs with CC annotations. 

Table 3. PP-Int: Differences between interacting 
and random, non-interacting pairs of genes in 
terms of their GO-driven similarity. SE: standard 
error of the estimated mean. N.S: no significance 

Simple average similarity method 

GO  
Hierarchy 

True Positives 
(Mean ± SE) 

Random Pairs  
(Mean ± SE) Significance 

MF NA 0.28 ± 0.200 NA 

BP 0.23 ± 0.02 0.19 ± 0.005 p < 0.05 

CC 0.37 ± 0.19 0.22 ±0.040 N.S 

 
Highest average similarity method 

GO  
Hierarchy 

True Positives 
(Mean ± SE) 

Random Pairs  
(Mean ± SE) Significance 

MF NA 0.30 ± 0.200 NA 

BP 0.45 ± 0.02 0.39 ± 0.007 p < 0.05 

CC 0.38 ± 0.19 0.24 ± 0.040 N.S 

 
5. Discussion and Conclusions 
 

Relationships between GO-driven similarity, based 
on an information theoretic approach, and different 
levels of functional interaction were investigated.  
Three complexity levels were explored: Co-regulation 
in S. cerevisiae, a more comprehensive set of 
functional associations (including both physical and 
non-physical interactions) in the same organism and a 
smaller set of PP interactions in C. elegans.   

Data set and method selection. We focused our 
investigation on previously published, high-quality 
annotated interactions, which represented the reference 
data sets for this study.  The less reliable annotations 
were removed from the data used to compute GO-
driven similarity. We concentrated on a GO-driven 
similarity assessment approach (Lin) that has 
previously shown to be strongly related to sequence-
based similarity and gene co-expression [6], [7].  
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Moreover, we assessed the highest average similarity 
method that aims to improve estimation consistency. 

 

 
Figure 3. PP-Int: Rate of false positive predictions, 
P, as a function of the GOS-Th for all GO 
hierarchies. P estimates the probability of 
predicting spurious associations. 

Summary of findings. This study demonstrated 
significant relationships between functional similarity 
(assessed by GO-driven similarity) and known 
interactions.  This pattern was remarkably observed 
under all hierarchies for CoReg and FunNet.  This 
supports the hypothesis that the GO-driven similarity 
of pair of genes may be applied to support the 
prediction of functional interactions (including co-
regulatory and PP interactions) in yeast. Furthermore, 
by only excluding IEA annotations (including ISS) 
similar general trends can be observed in all data sets, 
similarity estimation methods and GO hierarchies.  
This comparison is included in a Supplementary 
Section along with additional experiments suggesting 
that the degree of GO-driven similarity is consistent 
with interaction likelihood scores of pairs of genes as 
reported by Lee et al. [2] based on a comprehensive, 

integrative prediction strategy. The Supplementary 
Section can be obtained on request from the authors. 
We also performed a manual verification (details in 
Supplementary Section) to assess the potential 
biological significance of some of the “false positive” 
(novel) links. This procedure reported nine pairs of 
proteins (with unknown interactions), which are 
feasible candidates to be interacting partners in C. 
elegans, such as F28D1.2 and B0547.1, which are 
involved in DNA repair and ubiquitination, 
respectively. 

Applications to interactions prediction. Our 
research does not of course suggest that this approach 
is sufficient or even necessary to detect relevant 
interactions.  Similarly, we did not aim to argue that it 
represents a more effective prediction model than 
existing approaches. However, this investigation 
offered evidence to motivate the application of this 
functional similarity measure as a complementary 
predictive resource of functional interaction. This, in 
combination with other sources, such as gene co-
expression and different interaction prediction models, 
may support more accurate and biologically-
meaningful predictions. Integrative prediction models 
such as those reported by Lee et al. [2] and Jansen et 
al. [1] may benefit from incorporating this knowledge-
based source.  The predictive performance of emerging 
models should be thoroughly assessed using, for 
example, receiver-operator characteristic (ROC) curves 
and other powerful statistical tests, which is also part 
of our current and future research (see below).  

Applications to annotation prediction. The results 
highlight two important protein groups. The first group 
represents protein pairs that are not similar based on 
their GO terms. These proteins may be true negatives, 
but they may also represent interacting proteins for 
which no interaction has been recorded yet. This could 
be the case for proteins with incomplete GO 
annotations or for those involved in processes not 
properly described by this ontology.  The second group 
corresponds to similar proteins pairs in relation to their 
GO-driven annotations. As demonstrated above, such 
similarity offers strong evidence for the presence of 
functional interaction. Functional similarity can also be 
combined with other post-genomic sources of 
evidence, such as genome-wide in-situ hybridization, 
to improve the detection of false positive interactions. 
Thus, the GO-driven similarity approach can also 
complement experimental approaches to determining 
false positives. In the case of metazoan organisms, e.g. 
C. elegans, the GO-driven similarity approach is much 
more difficult to assess as the function of a protein can 
be related to its tissue- or organ-specific expression 
patterns. It would be important to integrate gene 
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expression and tissue localization information to 
complement GO-driven similarity. Moreover, it might 
be possible to infer tissue localization from GO 
annotations. This dimension, which is not considered 
in unicellular organisms, underlies the complexity of 
this prediction task and the importance of 
implementing integrative, module-based approaches to 
interactome prediction. 

Related work. P.H Lee and D. Lee [17] recently 
integrated ontology-driven similarity information as 
part of their modularized network learning method 
(MONET).  They first identified modules of 
interrelated genes using gene expression correlation 
and MIPS (Munich Information center for Protein 
Sequences database) annotations.  Bayesian networks 
were then inferred from the detected modules that 
successfully predicted relevant gene regulation 
networks in yeast.  Ontology-driven similarity was 
used to aid in the identification of clusters of genes on 
the basis of their MIPS annotations. Between-gene 
similarity was estimated using the between-term 
Resnik’s method [18], which is also an information-
theoretic approach. But unlike Lin’s, Resnik’s method 
generates un-normalized similarity values ranging 
from 0 to infinity.  Moreover, previous research has 
shown that Lin’s technique may outperform Renisk’s 
and other information-theoretic approaches [19].  For 
example, Lin’s method generates similarity values 
highly correlated with human assessments of similarity 
in different application domains. It also reflects 
significant relationships with gene co-expression. Such 
relationships are represented in a more consistent and 
meaningful fashion in comparison to Resnik’s 
approach [7]. 

Wang et al. [8] proposed a GO-driven hierarchical 
clustering method based on Lin’s technique, which 
identified significant functional modules relevant to 
several responses to stimuli in yeast. Their method 
may complement P.H. Lee and D. Lee’s method [17] 
for the detection of functional modules based on GO 
annotations. A recent study on global prediction of 
regulatory networks in yeast found that more than 12% 
of genetic interactions included genes with identical 
GO annotations [20]. It also found that over 27% of 
the interactions comprised similar annotations sets 
based on a conservative estimate of similarity, which 
approximated the degree of annotation overlaps.  Our 
investigation provides further evidence of the potential 
of GO-driven similarity information to facilitate the 
prediction of functional interactions. Moreover, we 
have shown that these relationships go beyond the 
regulatory level and can support applications involving 
uni- and multi-cellular organisms. 

Limitations. The similarity value distributions, 
significant differences and the potential to reduce the 
probability of detecting spurious associations 
encourage further investigations.  Moreover, we 
believe that, even when significant results were 
obtained, our assessment may actually be under-
estimated. This is because many of the pairs of genes 
included in the randomly-generated sets (“true 
negatives”) might indeed be part of more 
comprehensive collections of true positive interactions 
not included in this study. Some of them might also 
become true positive interactions in the future with the 
emergence of new experimental and validated 
evidence.  This factor also suggests that the differences 
and relationships identified could be stronger. The 
relatively large amount of interacting pairs included in 
the Co-Reg and FunNet data sets may contribute to the 
reduction of such noise sources and possible bias. 

One of the major challenges in predicting 
interaction maps is to remove false-positives 
interactions. False positives predictions can be caused 
by technical or biological factors. The former have no 
biological meaning and come from technical 
limitations such as the number and the strength of 
phenotypic tests used for two-hybrid screenings or 
purification steps realized for complex identification 
by mass spectrometry. The latter may originate from 
proteins that actually interact but are not expressed in 
the same tissues or organs. For example, it was 
estimated that about 25% to 50% of the genome-wide 
PP interaction predictions reported in many high-
profile publications actually represent false positive 
interactions [21]. This investigation also estimated 
probability values, P, that offered relevant insights into 
these relationships. These indicators help us to further 
assess the predictive ability of the GO-driven similarity 
method to detect valid interactions for different 
prediction similarity thresholds, GOS-Th. The results 
suggest that in general the larger the GOS-Th, the 
lower the probability of making false positive 
predictions.  But it also highlights the fact that many of 
the false positive interaction predictions might show 
relatively high similarities.  This may also be explained 
by the difficulties in creating exact true negative data 
sets. Nevertheless, the results strongly suggest that 
there is a tendency to reduce the number of false 
positive interactions by applying more rigorous 
thresholds.  With regard to PPInt, any interpretation of 
Figure 3 should take into account the very low number 
of gene pairs with CC annotations.  In this case the 
results only suggest the significance of GO-driven 
predictions based on the BP hierarchy. The results also 
confirm that the higher the GOS-Th, the more limited 
the predictive coverage of the model, i.e. the higher the 
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possibility of missing true positive interactions. This 
property is perhaps more visible in the CoReg and 
FunNet data sets. Alternative assessments may 
incorporate other estimators of P, including less 
conservative methods. Tables 1 to 3 and Figures. 1 to 3 
confirm that, in principle, it would be possible to 
implement more accurate predictive models with 
higher GOS-Th values, but at the risk of reducing 
predictive coverage. Predictions based on annotations 
from the BP hierarchy are in general indicated as 
reliable and accurate for the three data sets analyzed. 
Similar results were obtained when including ISS 
annotations. With regard to the CC hierarchy, the 
relatively high P values and their non-monotonic 
response against GOS-Th confirms its lack of 
reliability as a predictor of positive interactions for 
CoReg. These results might not be considered as 
surprising findings. However, they highlight the 
potential of using GO-driven similarity as an 
alternative weak prediction model, which may 
complement other weak predictive resources, e.g. gene 
co-expression and high-throughput interaction 
identification techniques.  It also opens opportunities 
to incorporate prior knowledge to support the 
automated assessment of predictions derived from 
large-scale studies. 

Future work. We are currently applying the GO-
driven similarity assessment approach to support the 
prediction of integrated, large scale functional 
networks in different model organisms [22]. We will 
also compare our methods with recent contributions in 
this area [23]. 
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